
November, 2001

Make Them Hear You!

Tamar E. Granor

Sound can be a valuable addition to an application. Having sounds play
when certain actions occur can help users to be more productive. For

example, Intuit's Quicken uses the sound of a cash register to indicate
that a transaction has been recorded.

However, there are some problems when using sound in applications.

First, sound should never be the only medium for conveying a
necessary message because users with hearing impairments and those

in noisy environments may miss the message entirely. Second, even
when used in addition to visual notification, the developer's choice of

sounds may be inaudible to some users or simply annoying.

Fortunately, Windows provides a way for us to use sounds in

applications, but give users control over the actual sounds played.
There are two parts to doing this: actually playing the sounds, and

giving users control over them.

Sounds in Windows

Sounds are generally implemented through .WAV files. Windows has a

group of sounds defined by name and associated with particular .WAV
files. For example, by default, the system sound "Asterisk" is

associated with the file "Chord.WAV". Applications can play the system
sounds as needed. However, individual applications can also define

their own sounds and associate them with .WAV files.

Why would an application define sounds instead of just playing them

directly? Because sounds that are defined are displayed in the Sounds
applet, so users can change the .WAV file associated with a particular

sound.

Playing Sounds in VFP apps

The easiest way to play a sound in Visual FoxPro is using SET BELL TO

to specify the sound to play, then issuing ??CHR(7). However, this
approach isn't particularly self-documenting. In some versions of

FoxPro, it also leads to blank lines on whatever window is receiving
output.

A better approach is to use the Windows PlaySound function, which is

part of WinMM.DLL in the Windows API. As with other API functions,
you need to declare PlaySound before you can use it:

DECLARE INTEGER PlaySound IN Winmm.DLL ;
 STRING cName, INTEGER hModule, INTEGER nFlags

The first parameter, cName, specifies the name of a .WAV file or a

Windows sound. The second parameter, hModule, can be ignored –
just pass 0. The third parameter tells the function whether it's to play

a file or a system sound. Pass 0 for a .WAV file or 0x100000 for a
system sound. So, for example, to play the system "asterisk" sound,

issue this call:

PlaySound("SystemAsterisk", 0, 0x100000)

To play the file Chord.WAV in the Windows\Media directory, use this

call:

PlaySound("C:\Windows\Media\Chord.Wav", 0, 0)

Registering Sounds

Information about defined sounds is stored in the Registry. Each
application that defines custom sounds has a subkey under

HKEY_CURRENT_USER\AppEvents\Schemes\Apps. The application's
key has a value containing the name the Sounds applet uses for the

application. Each define sound has a subkey under the application's
key. Each of those subkeys needs at least one more subkey, named

.Current, whose value is the .WAV file to play.

For example, consider an application called "Demo App" that has three

custom sounds: one to play on application start-up, one to play when
the application closes, and one to play when an error occurs. Table 1

shows the Registry keys we need to add to let the user choose the
sounds in each case. Figure 1 shows the Registry with these keys

added and some (rather strange) .WAV files specified. Figure 2 shows
the registered sounds in the Sounds applet.

Table 1. Adding sounds to the Registry–To specify three sounds for the Demo App,
we'd add these keys to the registry, substituting the path and file name for each
relevant .WAV file. All are in HKEY_CURRENT_USER.

Key Value

\AppEvents\Schemes\Apps\Demo Demo App

Key Value

\AppEvents\Schemes\Apps\Demo\Start

\AppEvents\Schemes\Apps\Demo\Start\.Current <.WAV to play on
app start-up>

\AppEvents\Schemes\Apps\Demo\End

\AppEvents\Schemes\Apps\Demo\End\.Current <.WAV to play on

app shut-down>

\AppEvents\Schemes\Apps\Demo\Error

\AppEvents\Schemes\Apps\Demo\Error\.Current <.WAV to play on

error>

Figure 1. Custom sounds in the Registry – You can add Registry keys to define
custom sounds for your applications.

Figure 2. Registered sounds – Once sounds are defined in the Registry, they appear
in the Sounds applet, where users can change the assigned .WAV files.

Note: The system sounds use one more level of indirection. Each has

an internal name for the sound registered as a subkey of
HKEY_CURRENT_USER\AppEvents\EventLabels; the value for each

subkey is the name shown for that sound in the Sounds applet. For
example, the key

HKEY_CURRENT_USER\AppEvents\EventLabels\SystemAsterisk has a
value of Asterisk. However, there's no requirement to do things this

way and it simply adds extra steps to the process of registering and
playing sounds.

Setting up Application sounds

With all this background, we're ready to store sounds for an
application. To do so, we need to create the key for the application

itself, and the subkeys for each sound to be registered.

Visual FoxPro comes with a class for working in the Registry that's

much easier to use than direct calls to the API's registry functions. The
class is Registry.VCX in VFP 6 and 7 and Registry.PRG in VFP 5. (The

Registry class is documented in the VFP 6 and 7 Help files.)

The function in Listing 1 (SetSounds.PRG on this month's Professional

Resource CD) registers the sounds for an application. It has 3 required
parameters. The first is the internal name of the application, that is,

the name to use for its registry key. The second parameter is the
visible name of the application, that is, the name to show in the

Sounds applet. (These two parameters can be the same.) The third

parameter is an array of sounds to register. The array needs two
columns: the name of the sound and the .WAV file assigned to the

sound.

Listing 1. Registering Sounds–This function lets you register the sounds for an
application.

* SetSounds.PRG
* Written by: Tamar E. Granor
* Copyright: 2001, Tamar E. Granor, Ph.D.
* Create registry entries for an app and its sounds

LPARAMETERS cInternalName, cAppName, aSoundList
 * cInternalName = the internal name of the application
 * - used as the registry key
 * cAppName = the name of the application to appear
 * in the Sounds applet
 * aSoundList = two-column array - each row contains
 * name of a sound and the WAV file to
 * play for it.

#DEFINE HKEY_CURRENT_USER -2147483647

EXTERNAL ARRAY aSoundList

* Check parameters
ASSERT VARTYPE(cInternalName) = "C" ;
 and NOT EMPTY(cInternalName) ;
 MESSAGE "AddSounds: Must pass cInternalName"
IF VARTYPE(cInternalName) <> "C" OR EMPTY(cInternalName)
 ERROR 11
 RETURN 0
ENDIF

ASSERT VARTYPE(cAppName) = "C" and NOT EMPTY(cAppName) ;
 MESSAGE "AddSounds: Must pass cAppName"
IF VARTYPE(cAppName) <> "C" OR EMPTY(cAppName)
 ERROR 11
 RETURN 0
ENDIF

ASSERT TYPE("aSoundList[1]")="C" ;
 MESSAGE "AddSounds: Must pass array of sounds"

IF TYPE("aSoundList[1]")<> "C"
 ERROR 11
 RETURN 0
ENDIF

ASSERT ALEN(aSoundList,2) = 2 ;
 MESSAGE "AddSounds: Array must have two columns"

IF ALEN(aSoundList,2) <> 2
 ERROR 230
 RETURN 0
ENDIF

* If we get this far, we have parameters. Still should
* check array contents as we go.

LOCAL oRegisty, cStartKey, cNullVal, nSoundCount, nSound
LOCAL nNewSoundCount

oRegistry = NEWOBJECT("Registry",HOME()+"FFC\Registry")

WITH oRegistry
 cStartKey = "AppEvents\Schemes\Apps"
 * Create a null string
 cNullVal = ""
 cNullVal = .null.

 nNewSoundCount = 0

 IF .IsKey(cStartKey, HKEY_CURRENT_USER)
 * The key we need exists. Go for it.
 * Start by creating the key for the application

 IF .SetRegKey(cNullVal, cAppName, ;
 cStartKey + "\" + cInternalName, ;
 HKEY_CURRENT_USER, .t.) = 0

 * Now add the sounds, one by one
 nSoundCount = ALEN(aSoundList, 1)
 FOR nSound = 1 TO nSoundCount
 * Check that both items are provided and that
 * the file exists
 IF TYPE("aSoundList[nSound, 1]") = "C" ;
 and TYPE("aSoundList[nSound, 2]") = "C" ;
 and FILE(aSoundList[nSound, 2])

 * This one looks good, so store the information
 IF .SetRegKey(cNullVal, ;
 aSoundList[nSound, 2], ;
 cStartKey + "\" + cInternalName + "\" + ;
 aSoundList[nSound, 1] + "\.Current", ;
 HKEY_CURRENT_USER, .t.) = 0
 nNewSoundCount = nNewSoundCount + 1
 ENDIF
 ENDIF
 ENDFOR
 ELSE
 ERROR "Can't add registry key"
 ENDIF
 ELSE
 ERROR "Registry key does not exist"
 ENDIF

ENDWITH

RETURN nNewSoundCount

Listing 2 shows a program (DemoSounds.PRG on the PRD) to set up

the array of sounds for a demo application (the same one shown in
Figures 1 and 2) and register them.

Listing 2 Setting up sound registration – This program registers the
sounds for a demo application, by calling SetSounds.PRG.

* DemoSounds.PRG
* This program adds sounds to the Registry for a demo app.

LOCAL aSounds[3,2], cRegistryName, cVisibleName

* Set up list of sounds
aSounds[1,1] = "Demo Start"
aSounds[1,2] = "C:\WinNT\Media\RingOut.WAV"
aSounds[2,1] = "Demo End"
aSounds[2,2] = "C:\WinNT\Media\RingIn.WAV"
aSounds[3,1] = "Demo Error"
aSounds[3,2] = "C:\WinNT\Media\Tada.WAV"

* Set up app name
cRegistryName = "Demo"
cVisibleName = "Sound Demo"

nResult = SetSounds(cRegistryName, cVisibleName, @aSounds)

IF nResult < 3
 MESSAGEBOX("Problem registering sounds",48,"Accessibility Demo")
ENDIF

RETURN

The PRD also contains ClearSounds.PRG, which removes an

application's sounds from the Registry, and DemoClearSounds.PRG,
which removes the demo application's sounds.

Retrieving Application Sounds

Once the sounds for an application are registered, using them in the
application is a matter of looking up the right sound in the Registry

and using PlaySound to play it. Listing 3 shows a function
(PlayAppSound.PRG on the PRD) that accepts an application name and

a sound name and plays the specified sound, if it's found in the
Registry. The function has a logical parameter that determines

whether to raise an error, if the sound isn't found.

Listing 3. Playing a registered sound–This function finds and plays a specified sound.

* PlayAppSound.PRG
* Play a sound registered for this application
#DEFINE HKEY_CURRENT_USER -2147483647

LPARAMETERS cAppName, cSound, lErrorIfMissing
 * cAppName = the name used for the app in the registry
 * cSound = the name used for the sound in the registry
 * lErrorIfMissing = determines what happens if the
 * specified sound can't be found in
 * the registry. Defaults to .F, which
 * ignores the problem

* Check params
ASSERT VARTYPE(cAppName) = "C" ;
 MESSAGE "PlayAppSound: First parameter is " + ;
 "character app name"

IF VARTYPE(cAppName) <> "C"
 ERROR 11
 RETURN .F.
ENDIF

ASSERT VARTYPE(cSound) = "C" ;
 MESSAGE "PlayAppSound: Second parameter is " + ;

 "character sound name"

IF VARTYPE(cSound) <> "C"
 ERROR 11
 RETURN .f.
ENDIF

ASSERT VARTYPE(lErrorIfMissing) = "L" ;
 MESSAGE "PlayAppSound: Third parameter is logical"

IF VARTYPE(lErrorIfMissing) <> "L"
 ERROR 11
 RETURN .f.
ENDIF

* Extract the sound
LOCAL oRegistry, cSoundFile

oRegistry = NEWOBJECT("Registry",HOME()+"FFC\Registry")

WITH oRegistry
 cStartKey = "AppEvents\Schemes\Apps"
 IF .GetRegKey("",@cSoundFile, ;
 cStartKey + "\" + cAppName + "\" + ;
 cSound + "\.Current", ;
 HKEY_CURRENT_USER) <> 0
 IF lErrorIfMissing
 ERROR "Sound not registered"
 ENDIF
 RETURN .f.
 ENDIF
ENDWITH

* Got the file name
DECLARE INTEGER PlaySound IN Winmm.DLL ;
 STRING cName, INTEGER hModule, INTEGER nFlags

PlaySound(cSoundFile, 0, 0)

RETURN

You can use the function as in this example, which plays the "Demo

Start" sound for the Demo application:

PlayAppSound("Demo", "Demo Start")

On to classes

Since it's likely that you'll want to play sounds more than once for a

given application, it makes sense to load all the sound information
from the Registry when the application starts and play them when

needed. Since this approach requires data storage as well as code, it's

a good candidate for a class. Even thoughregistering and unregistering

sounds are one-shot operations, they can also go into a class.

The PRD contains a class library called Sound.VCX with three classes:

cusPlaySounds plays application sounds. You need to set the
cAppInternalName property to the name used for the application in the

Registry. After that, you can call the PlaySound method, passing the
name of the sound you want to play. The first time you call PlaySound,

it loads all the sounds for the application into an array property.

cusRegisterSounds is an abstract class for registering and

unregistering application sounds. To use it, subclass it, set the
cAppInternalName and cAppVisibleName properties, and write code in

the SetupSounds method to populate the aSounds array property with
the list of sounds.

cusRegisterDemoSounds is a subclass of cusRegisterSounds configured
for the Demo application of this article. To test it, instantiate it, then

call the StoreSounds method to create the appropriate Registry keys.

Use ClearSounds to remove the Registry keys.

The code in all three classes is quite similar to the functions earlier in

the article, modified to refer to the relevant properties and methods,
rather than to parameters.

Hear, hear

By defining sounds for your application and adding them to the

Registry, you give users more control of your application and make it

more likely that sound can be an effective part of the user interface.
You also address the needs of users with auditory disabilities, bringing

your application one step closer to meeting the requirements of the
Americans with Disabilities Act and similar legislation around the

world.

